GradCAM and its Implementation in PyTorch

Deep learning models, especially convolutional neural networks (CNNs), often function as black boxes, making it difficult to interpret their decision-making processes. Gradient-weighted Class Activation Mapping (GradCAM) is a powerful technique used to visualize and understand these models by highlighting the regions of an image that contribute most to a prediction. Continue Reading

GradCAM with TensorFlow: Interpreting Neural Networks with Class Activation Maps

Deep learning models, particularly convolutional neural networks (CNNs), are widely used for image classification, object detection, and various computer vision tasks. However, these models are often referred to as “black boxes” due to their complex decision-making processes. To interpret these decisions and understand what parts of an image influence the Continue Reading