RESUNET Implementation in PyTorch

This tutorial focuses on implementing the image segmentation architecture called Deep Residual UNET (RESUNET) in the PyTorch framework. It’s an encoder-decoder architecture developed by Zhengxin Zhang et al. for semantic segmentation. It was initially used for road extraction from high-resolution aerial images in the field of remote sensing image analysis. Original Paper: Road Extraction […]

Read More

UNET Implementation in PyTorch

This tutorial focus on the implementation of the image segmentation architecture called UNET in the PyTorch framework. It’s a simple encoder-decoder architecture developed by Olaf Ronneberger et al. for Biomedical Image Segmentation in 2015 at the University of Freiburg, Germany. What is Image Segmentation? An image consists of multiple objects […]

Read More