VGG19 UNET Implementation in TensorFlow

In this tutorial, we are going to implement the U-Net architecture in TensorFlow, where we will replace its encoder with a pre-trained VGG19 architecture. The VGG19 is already trained on the ImageNet classification dataset. Therefore, it would have already learned the required features, which would help to boost the overall Continue Reading

PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model

PP-LiteSeg is a lightweight encoder-decoder architecture designed for real-time semantic segmentation. It consists of three modules: Encoder: Lightweight network Aggregation: Simple Pyramid Pooling Module (SPPM) Decoder: Flexible and Lightweight Decoder (FLD) and Unified Attention Fusion Module (UAFM) Encoder The STDCNet is the encoder for the proposed PP-LiteSeg for its high Continue Reading

Deep Learning based Background Removal from Images using TensorFlow and Python

In this tutorial, we are going to learn how to use deep learning to remove background from images with TensorFlow. In short, we’ll use DeepLabV3+, a semantic segmentation based model to extract the background and foreground mask from the image. We are going to use these masks to extract the Continue Reading

VGG16 UNET Implementation in TensorFlow

In this article, we are going to implement the most widely used image segmentation architecture called UNET. We are going to replace the UNET encoder with the VGG16 implementation from the TensorFlow library. The UNET encoder would learn the features from scratch, while the VGG16 is already trained on the Continue Reading

Human Image Segmentation with DeepLabV3+ in TensorFlow

In this article, you will learn to perform person segmentation with DeepLabV3+ architecture on human images. Here, we will cover the entire process of image segmentation starting from data processing to evaluation. The entire code is written in Python programming language using TensorFlow 2.5 framework. Table of Content What is Continue Reading

RESUNET Implementation in PyTorch

This tutorial focuses on implementing the image segmentation architecture called Deep Residual UNET (RESUNET) in the PyTorch framework. It’s an encoder-decoder architecture developed by Zhengxin Zhang et al. for semantic segmentation. It was initially used for road extraction from high-resolution aerial images in the field of remote sensing image analysis. Original Paper: Road Extraction Continue Reading

UNET Implementation in TensorFlow using Keras API

In this post, you will learn how to implement UNET architecture in TensorFlow using Keras API. The post helps you to learn about UNET, and how to use it for your research. UNET is one of the most popular semantic segmentation architecture. Olaf Ronneberger et al. developed this network for Continue Reading

What is RESUNET

RESUNET refers to Deep Residual UNET. It’s an encoder-decoder architecture developed by Zhengxin Zhang et al. for semantic segmentation. It was initially used for the road extraction from the high-resolution aerial images in the field of remote sensing image analysis. Later, it was adopted by researchers for multiple other applications Continue Reading

What is UNET?

UNET is an architecture developed by Olaf Ronneberger and his team at the University of Freiburg in 2015 for biomedical image segmentation. It is a highly popular approach for semantic segmentation tasks. It is a fully convolutional neural network that is designed to learn from fewer training samples. This architecture Continue Reading

Polyp Segmentation using UNET in TensorFlow 2.0

In this tutorial, we will learn about how to perform polyp segmentation using deep learning, UNet architecture, OpenCV, and other libraries. We will use a polyp segmentation dataset to understand how semantic segmentation is applied to real-world data. In polyp segmentation, the images with polyp are given to a trained Continue Reading