GAN – What is Generative Adversarial Network?

Generative Adversarial Network or GAN is a machine learning approach used for generative modelling designed by Ian Goodfellow and his colleagues in 2014. It is made of two neural networks: generator network and a discriminator network. The generator network learns to generate new examples, while the discriminator network tries to Continue Reading

UNET Segmentation with Pretrained MobileNetV2 as Encoder

In this tutorial, we are going to work on UNet segmentation and use it for biomedical image segmentation tasks. This time we are going to use pre-trained MobileNetV2 as the encoder for the UNet architecture. We are going to integrate the pre-trained MobileNetV2 with the UNet and have an efficient Continue Reading

OpenAI GPT-3: The successor of OpenAI GPT-2

The research lab OpenAI has released a preprint arXiv paper, titled “Language Models are Few-Shot Learners” or OpenAI GPT-3, which is a continuation of their previous work entitled “Language Models are Unsupervised Multitask Learners” or GPT-2. As a recap. GPT-2 is a language model based on the transformer architecture with Continue Reading

Building Convolutional Autoencoder using TensorFlow 2.0

We are going to continue our journey on the autoencoders. In this article, we are going to build a convolutional autoencoder using the convolutional neural network (CNN) in TensorFlow 2.0. Let us first revise, what are autoencoders?  Autoencoders are neural networks that attempt to mimic its input as closely as Continue Reading

Polyp Segmentation using UNET in TensorFlow 2.0

In this tutorial, we will learn about how to perform polyp segmentation using deep learning, UNet architecture, OpenCV, and other libraries. We will use a polyp segmentation dataset to understand how semantic segmentation is applied to real-world data. In polyp segmentation, the images with polyp are given to a trained Continue Reading

Review: One Model To Learn Them All

Recent advancement in the field of deep learning has enabled us to develop models that yield impressive results across various fields, from image classification, object detection, to speech recognition. However, developing the architecture for each problem is a challenge in itself. In this paper, the authors present a single deep Continue Reading